
Empire Pass Master (Equipment)

Level 2 Reserve Study

Report Period - 01/01/2021 - 12/31/2021

Client Reference Number	17803
Property Type	Master
Fiscal Year End	12/31

Type of Study
Date of Property Inspection
Prepared By
Analysis Method
Funding Goal

Update w/Site Visit 6/11/2020 Dale Gifford Cash Flow Full Funding

Report prepared on – Tuesday, August 18, 2020

TEL: (888) 356-3783 | Fax: (866) 279-9662 WWW.COMPLEXSOLUTIONSLTD.COM

Table of Contents

Introduction

•	Executive Summary	page 1
•	Introduction	page 2
•	General Information and Frequently Asked Questions	page 3 - 4

Reserve Analysis

•	Funding Summary	page 5
•	Percent Funded – Graph	page 6
•	Component Inventory	page 7
•	Significant Components	page 8
•	Significant Components – Graph	page 9
•	Yearly Summary	page 10
•	Yearly Reserve Contributions – Graph	page 11
•	Component Funding Information	page 12
•	Yearly Cash Flow	page 13
•	Yearly Reserve Expenditures – Graph	page 14
•	Projected Reserve Expenditures by Year	page 15 - 16

Component Evaluation

• Component Evaluation

```
page 1 - 28
```

Glossary of Commonly used Words and Phrases

Executive Summary – Empire Pass Master (Equipment) – ID # 17803

Information to complete this Reserve Study was gathered by performing an on-site inspection of the common area elements. In addition, we also obtained information by contacting any vendors and/or contractors that have worked on the property recently, as well as communicating with the property representative (BOD Member and/or Community Manager). To the best of our knowledge, the conclusions and recommendations of this report are considered reliable and accurate insofar as the information obtained from these sources.

Projected Starting Balance as of 01/01/2021	\$1,277,315
Ideal Reserve Balance as of 01/01/2021	\$1,783,714
Percent Funded as of 01/01/2021	72%
Recommended Reserve Contribution (per month)	\$22,100
Recommended Special Assessment	\$0

Empire Pass Master (Equipment) is the equipment listing for Empire Pass Master Owner's Association.

Currently Programmed Projects

Projects programmed to occur this fiscal year (FY2021) include Unimog #2 replace (Comp# 1901), and Chevy Silverado diesel truck 2011 replace (Comp# 1903). We have programmed an estimated \$470,000 in reserve expenditures toward the completion of these projects. (See page 15)

Significant Reserve Projects

The association's significant reserve projects are Unimog #2 replace (Comp# 1901), Unimog #3 replace (Comp# 1901), Unimog #4 replace (Comp# 1901), and Unimog #5 replace (Comp# 1901). The fiscal significance of these components is approximately 16%, 16%, 15%, and 15% respectively (see page 9). A component's significance is calculated by dividing its replacement cost by its useful life. In this way, not only is a component's replacement cost considered but also the frequency of occurrence. These components most significance the association should properly maintain them to ensure they reach their full useful lives.

Reserve Funding

In comparing the projected starting reserve balance of \$1,277,315 versus the ideal reserve balance of \$1,783,714 we find the association's reserve fund to be approximately 72% funded. This indicates a weak reserve fund position. In order to continue to strengthen the account fund, we suggest adopting a monthly reserve contribution of \$22,100 (\$.00/unit) per month. If the contribution falls below this rate, then the reserve fund may fall into a situation where special assessments, deferred maintenance, and lower property values are likely at some point in the future.

Introduction

Reserve Study Purpose

The purpose of this Reserve Study is to provide the Association with a budgeting tool to help ensure that there are adequate reserve funds available to perform future reserve projects. The detailed schedules will serve as an advance warning that major projects will need to be addressed in the future. This will allow the Association to have ample time to obtain competitive bids for each project. It will also help to ensure the physical well-being of the property and ultimately enhance each owner's investment, while limiting the possibility of unexpected major projects that may lead to special assessments.

Preparer's Credentials

Mr. Gifford has been working in the community association industry for the last 16 years. Prior to taking a position, as the Regional Project Manager covering the Utah region, at Complex Solutions, he worked in community association management in Utah. While in community association management his positions included, Maintenance Supervisor, Senior Portfolio Manager and Vice President of Community Management. His work in community association management gave him extensive experience with; budget creation, reserves and reserve budgeting, community inspections and analyzing common area components.

- Professional Reserve Analyst (PRA) designation from Association of Professional Reserve Analysts (APRA), PRA #2320
- Reserve Specialist (RS) designation from Community Associations Institute (CAI), RS# 231
- Personally has prepared over 1,400 reserve studies in Salt Lake City Utah and surrounding areas
- Bachelor of Science in Chemistry from Emporia State University
- Certified Manager of Community Associations® (CMCA®) designation from the National Board of Certification for Community Association Managers (NBC-CAM)
- Association Management Specialist® (AMS®) designation from Community Associations Institute (CAI)
- Professional Community Association Manager® (PCAM®) designation from Community Associations Institute (CAI), PCAM# 1740,
- Active member and former Board member and chapter President of the Utah Chapter of Community Associations Institute (UCCAI)
- Recipient of Community Associations Institute's (CAI) annual award of Excellence in Chapter Leadership for service an achievement in 2010

Budget Breakdown

Every association conducts their business within a budget. There are typically two main parts to this budget, the Operating budget and the Reserve budget. The operating budget includes all expenses that occur on an annual basis as well as general maintenance and repairs. Typical operating budget line items include management fees, maintenance expenses, utilities, etc. The reserve budget is primarily made up of replacement items such as roofing, fencing, mechanical equipment, etc., that do not normally occur on an annual basis.

Report Sections

Reserve Analysis: this section contains the evaluation of the association's reserve balance, income, and expenses. It includes a finding of the client's current reserve fund status (measured as percent funded) and a recommendation for an appropriate reserve allocation rate (also known as the funding plan).

Component Evaluation: this section contains information regarding the physical status and replacement cost of reserve components the association is responsible to maintain. It is important to understand that while the component inventory will remain relatively "stable" from year to year, the condition assessment and life estimates will most likely vary from year to year.

General Information and Frequently Asked Questions

Is it the law to have a Reserve Study conducted?

The Government requires a reserve study in approximately 20 states. Also, the Association's governing documents may require a reserve fund be established. This does not mean a Reserve Study is required, but how are you going to know if you have enough money in the reserve fund if you do not have the proper information?

Why is it important to perform a Reserve Study?

This report provides the essential information that is needed to guide the Association in establishing the reserve portion of the total monthly assessment. The reserve fund is critical to the future of the association because it helps ensure that reserve projects can be completed on time. When projects are completed on time, deferred maintenance and the lower property values that typically accompany it can be avoided. It is suggested that a third party professionally prepare the Reserve Analysis Study since there is no vested interest in the property.

After we have a Reserve Study, what do we do with it?

Please take the time to review the report carefully and make sure the component information is complete and accurate. If there are any inaccuracies, or changes such as a component that the association feels should be added, removed, or altered, please inform us immediately so we may revise the report. Use the report to help establish your budget for the upcoming fiscal year.

How often do we review and update our Reserve Study?

There is a misconception that a Reserve Study is good for an extended period of time since the report has projections for a thirty year period. The assumptions, interest rates, inflation rates and other information used to create this report change each year. Scheduled events may not happen, unpredictable circumstances could occur, deterioration rates can be unpredictable and repair/replacement costs will vary from causes that are unforeseen. These variations alter the results of the Reserve Study. The Reserve Study should be professionally reviewed each year by having a Level III "no site visit" update reserve study performed. The Reserve Study should be professionally updated every three years by having a Level II "site visit" update reserve study performed.

What is a "Reserve Component" versus an "Operating Component"?

A "Reserve" component is an item that is the responsibility of the association to maintain, has a limited useful life, predictable remaining useful life, typically occurs on a cyclical basis that exceeds one year, and costs above a minimum threshold amount. An "Operating" component is typically a fixed expense that occurs on an annual basis.

What are the GREY areas of "maintenance" items that are often seen in a Reserve Study?

One of the most popular questions revolves around major "maintenance" items, such as painting the buildings or seal coating the asphalt. You may hear from your accountant that since painting or seal coating is not replacing a "capital" item, it cannot be considered a reserve component. However, it is the opinion of several major Reserve Study providers, including Complex Solutions, that these components meet the criteria of a reserve component.

Information and Data Gathered:

The information contained in this report is based on estimates and assumptions gathered from various sources. Estimated life expectancies are based upon conditions that were readily visible and accessible at the time of the site visit. While every effort has been made to ensure accurate results, this report reflects the judgment of Complex Solutions, Ltd. and should not be construed as a guarantee or assurance of predicting future events.

What happens during the Site Visit?

During the site visit we identify the common area components that we have determined require reserve funding. These components are quantified and a physical condition is observed. The site visit is conducted on the common areas as reported by client.

What is the Financial Analysis?

We project the starting balance by taking the most recent reserve fund balance as stated by the client and add expected reserve contributions to the end of the fiscal year. We then subtract the expenses of any pending projects. We compare this number to the Fully Funded Balance and arrive at the Percent Funded level. Based on that level of funding we then recommend a Funding Plan to help ensure the adequacy of funding in the future.

Measures of reserve fund financial strength are as follows:

- 0% 30% Funded is considered a "weak" financial position. Associations that fall into this category are more likely to have special assessments and deferred maintenance. Action should be taken to improve the financial strength of the reserve fund.
- 31% 69% Funded is considered a "fair" financial position. Associations that fall into this category are less likely to experience special assessments and deferred maintenance than being in a weak financial position. Action should be taken to improve the financial strength of the reserve fund.
- 70% 99% Funded is considered a "strong" financial position. Associations that fall into this category are less likely to experience special assessments and deferred maintenance than being in a fair financial position. Action should be taken to improve the financial strength of the reserve fund.
- **100% Funded** is considered an "ideal" financial position. Action should be taken to maintain the financial strength of the reserve fund.

Disclosures:

Information provided to the preparer of a reserve study by an official representative of the association regarding financial, historical, physical, quantitative or reserve project issues will be deemed reliable by the preparer. A reserve study will be a reflection of information provided to the preparer of the reserve study. The total of actual or projected reserves required as presented in the reserve study is based upon information provided that was not audited.

A reserve study is not intended to be used to perform an audit, an analysis of quality, a forensic study or a background check of historical records. An on-site inspection conducted in conjunction with a reserve study should not be deemed to be a project audit or quality inspection.

The results of this study are based on the independent opinion of the preparer and his experience and research during the course of his career in preparing Reserve Studies. In addition the opinions of experts on certain components have been gathered through research within their industry and with client's actual vendors. There is no implied warrantee or guarantee regarding our life and cost estimates/predictions. There is no implied warrantee or guarantee in any of our work product. Our results and findings will vary from another preparer's results and findings. A Reserve Study is necessarily a work in progress and subsequent Reserve Studies will vary from prior studies.

The projected life expectancy of the reserve components and the funding needs of the reserves of the association are based upon the association performing appropriate routine and preventative maintenance for each component. Failure to perform such maintenance can negatively impact the remaining useful life of the component and dramatically increase the funding needs of the reserves of the association.

This Reserve Study assumes that all construction assemblies and components identified herein are built properly and are free from defects in materials and/or workmanship. Defects can lead to reduced useful life and premature failure. It was not the intent of this Reserve Study to inspect for or to identify defects. If defects exist, repairs should be made so that the construction components and assemblies at the community reach the full and expected useful lives.

Site Visits: Should a site visit have been performed during the preparation of this reserve study no invasive testing was performed. The physical analysis performed during the site visit was not intended to be exhaustive in nature and may have included representative sampling. Estimated life expectancies and life cycles are based upon conditions that were readily accessible and visible at the time of the site visit. We have assumed any and all components have been properly built and will reach normal, typical life expectancies. A reserve study is not intended to identify or fund for construction defects. We did not and will not look for or identify construction defects during our site visit. In addition, environmental hazards (such as lead paint, asbestos, radon, etc.), have been excluded from this report.

Update Reserve Studies:

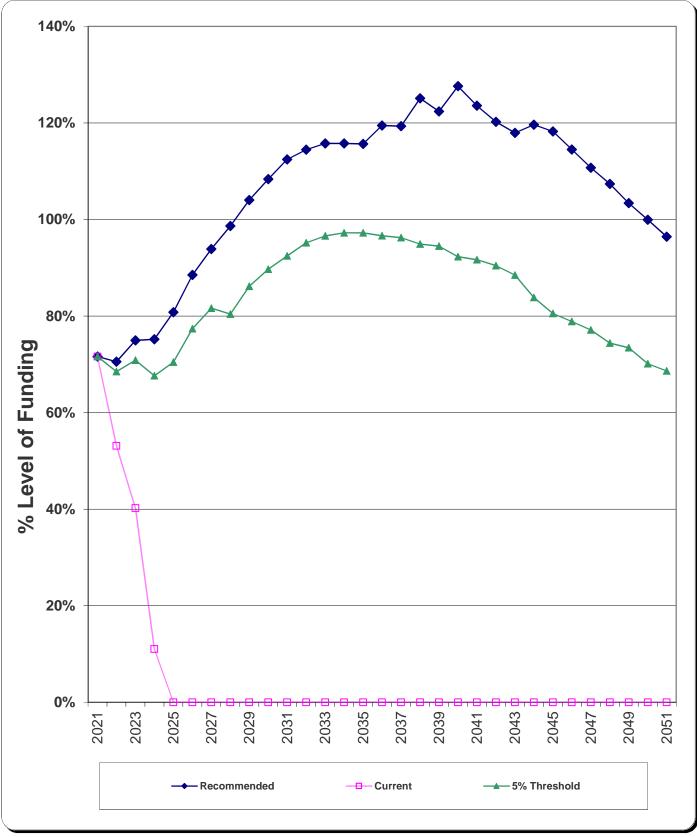
Level II Studies: Quantities of major components as reported in previous reserve studies are deemed to be accurate and reliable. The reserve study relies upon the validity of previous reserve studies.

Level III Studies: In addition to the above we have not visited the property when completing a Level III "No Site Visit" study. Therefore we have not verified the current condition of the components.

Insurance: We carry general and professional liability insurance as well as workers' compensation insurance.

Actual or Perceived Conflicts of Interest: There are no potential actual or perceived conflicts of interest that we are aware of.

Inflation and Interest Rates: The after tax interest rate used in the financial analysis may or may not be based on the clients reported after tax interest rate. If it is, we have not verified or audited the reported rate. The inflation rate may also be based on an amount we believe appropriate given the 30-year horizon of this study and may or may not reflect current or historical inflation rates.


Funding Summary

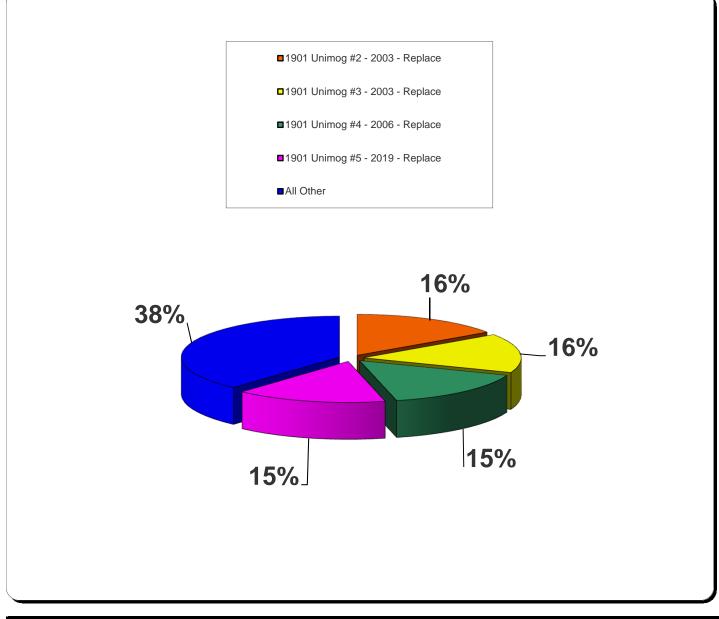
Beginning Assumptions

# of units	1
Fiscal Year End	31-Dec
Budgeted Monthly Reserve Allocation	\$0
Projected Starting Reserve Balance	\$1,277,315
Ideal Starting Reserve Balance	\$1,783,714
Economic Assumptions	
Projected Inflation Rate	3.00%
Reported After-Tax Interest Rate	0.10%
Current Reserve Status	
Current Balance as a % of Ideal Balance	72%
Recommendations	
Recommended Monthly Reserve Allocation	\$22,100
Future Annual Increases	3.00%
For number of years:	10
Increases thereafter:	0.00%
5%Threshold Monthly Reserve Allocation Reference	\$19,500
Future Annual Increases	3.00%
For number of years:	10
Increases thereafter:	0.00%

Percent Funded - Graph

Component Inventory

Category	ID #	Component Name	Useful Life (yrs.)	Remainin Useful Lif (yrs.)	- Doot	Worst Cost
Vehicles / Equipm	า 1901	Unimog #1 - 2003 - Replace	N/A		\$0	\$0
	1901	Unimog #2 - 2003 - Replace	16	0	\$400,000	\$410,000
	1901	Unimog #3 - 2003 - Replace	16	2	\$400,000	\$410,000
	1901	Unimog #4 - 2006 - Replace	16	6	\$400,000	\$410,000
	1901	Unimog #5 - 2019 - Replace	16	14	\$400,000	\$410,000
	1902	Dump Truck - Black - Replace	20	1	\$110,000	\$120,000
	1903	Chevy Silverado Diesel Truck - 2007	- Re 15	1	\$60,000	\$70,000
	1903	Chevy Silverado Diesel Truck - 2011	- Re 15	0	\$60,000	\$70,000
	1904	Loader Snow Plow - 320 - Replace	N/A		\$0	\$0
	1904	Loader Snow Plow - 380 - Replace	15	13	\$32,000	\$37,000
	1904	Truck Snow Plow - 2007 - Replace	15	2	\$8,000	\$10,000
	1904	Unimog Snow Plows - #4 - Replace	15	11	\$20,000	\$25,000
	1904	Unimog Snow Plows - #5 - Replace	15	13	\$20,000	\$25,000
	1905	Snoquip Snow Blower - Replace	15	11	\$18,000	\$22,000
	1905	Unimog Snow Blower - Replace	18	2	\$30,000	\$35,000
	1906	Unimog Salt Spreaders - #1, & 2 - Re	pla 20	5	\$62,000	\$72,000
	1906	Unimog Salt Spreaders - #4 - Replace	e 20	16	\$31,000	\$36,000
	1906	Unimog Salt Spreaders - #5 - Replace	e 20	18	\$31,000	\$36,000
	1908	Sweeper - DT80 - Replace	15	14	\$31,000	\$32,000
	1908	Sweeper - Schwarze - 2006 - Replace	e 20	8	\$85,000	\$90,000
	1909	Wood Chipper- Replace	15	15	\$50,000	\$51,000
	1912	Komatsu Skid Steer - 2000 - Replace	25	9	\$60,000	\$65,000
	1913	Komatsu Loader 320 - 2002 - Replace	e N/A		\$0	\$0
	1913	Komatsu Loader 380 - 2016 - Replace	e 20	3	\$206,000	\$216,000
	1914	CAT Mini Excavator - 2010 - Replace	20	6	\$75,000	\$80,000
	1915	Trackless Tractor - 2016 - Replace	15	9	\$68,000	\$73,000
	1990	Dump Truck Trailer - Replace	20	14	\$15,000	\$20,000
	1990	Skid Steer Trailer - Replace	20	2	\$8,000	\$10,000

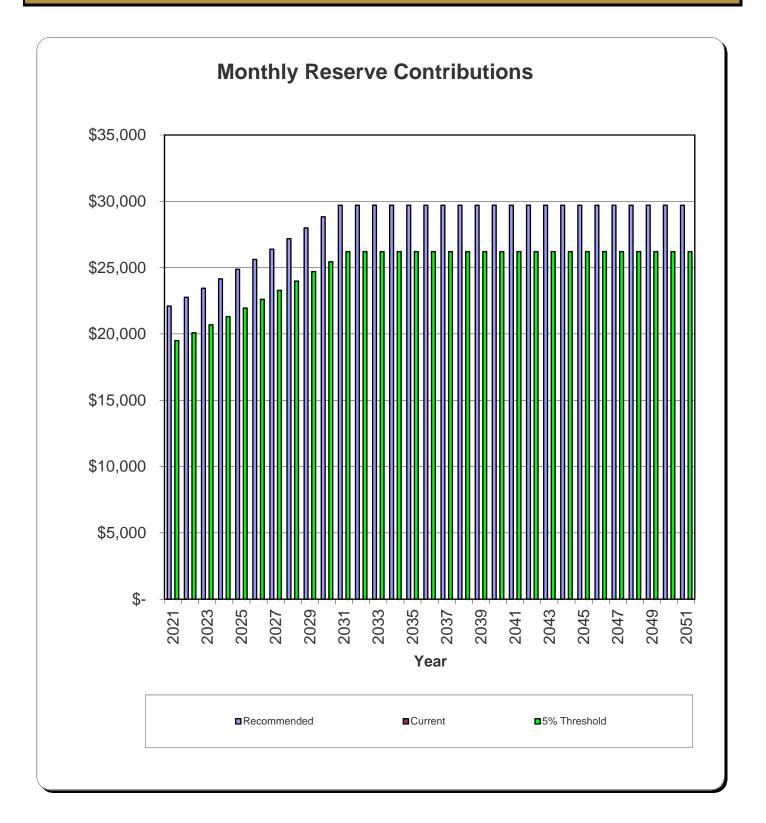


Significant Components

ID #	Component Name	Useful Life	Remaining Useful Life	Average Current	-	icance: cost/UL)
			(yrs.)	Cost	As \$	As %
1901	Unimog #2 - 2003 - Replace	16	0	\$405,000	\$25,313	15.4159%
1901	Unimog #3 - 2003 - Replace	16	2	\$405,000	\$25,313	15.4159%
1901	Unimog #4 - 2006 - Replace	16	6	\$405,000	\$25,313	15.4159%
1901	Unimog #5 - 2019 - Replace	16	14	\$405,000	\$25,313	15.4159%
1902	Dump Truck - Black - Replace	20	1	\$115,000	\$5,750	3.5019%
1903	Chevy Silverado Diesel Truck - 2007 - F	15	1	\$65,000	\$4,333	2.6391%
1903	Chevy Silverado Diesel Truck - 2011 - F	15	0	\$65,000	\$4,333	2.6391%
1904	Loader Snow Plow - 380 - Replace	15	13	\$34,500	\$2,300	1.4008%
1904	Truck Snow Plow - 2007 - Replace	15	2	\$9,000	\$600	0.3654%
1904	Unimog Snow Plows - #4 - Replace	15	11	\$22,500	\$1,500	0.9135%
1904	Unimog Snow Plows - #5 - Replace	15	13	\$22,500	\$1,500	0.9135%
1905	Snoquip Snow Blower - Replace	15	11	\$20,000	\$1,333	0.8120%
1905	Unimog Snow Blower - Replace	18	2	\$32,500	\$1,806	1.0996%
1906	Unimog Salt Spreaders - #1, & 2 - Repla	20	5	\$67,000	\$3,350	2.0402%
1906	Unimog Salt Spreaders - #4 - Replace	20	16	\$33,500	\$1,675	1.0201%
1906	Unimog Salt Spreaders - #5 - Replace	20	18	\$33,500	\$1,675	1.0201%
1908	Sweeper - DT80 - Replace	15	14	\$31,500	\$2,100	1.2789%
1908	Sweeper - Schwarze - 2006 - Replace	20	8	\$87,500	\$4,375	2.6645%
1909	Wood Chipper- Replace	15	15	\$50,500	\$3,367	2.0504%
1912	Komatsu Skid Steer - 2000 - Replace	25	9	\$62,500	\$2,500	1.5226%
1913	Komatsu Loader 380 - 2016 - Replace	20	3	\$211,000	\$10,550	6.4252%
1914	CAT Mini Excavator - 2010 - Replace	20	6	\$77,500	\$3,875	2.3600%
1915	Trackless Tractor - 2016 - Replace	15	9	\$70,500	\$4,700	2.8624%
1990	Dump Truck Trailer - Replace	20	14	\$17,500	\$875	0.5329%
1990	Skid Steer Trailer - Replace	20	2	\$9,000	\$450	0.2741%

Significant Components - Graph

ID # Component Name		Useful Life	Remaining Useful Life	Average Current	Significa (Curr Co	
		(yrs.)	(yrs.)	Cost	As \$	As %
1901	Unimog #2 - 2003 - Replace	16	0	\$405,000	\$25,313	16%
1901	Unimog #3 - 2003 - Replace	16	2	\$405,000	\$25,313	16%
1901	Unimog #4 - 2006 - Replace	16	6	\$405,000	\$25,313	15%
1901	Unimog #5 - 2019 - Replace	16	14	\$405,000	\$25,313	15%
All Other	See Expanded Table For Breakdown				\$62,947	38%



Yearly Summary

Year	Fully Funded	Starting Reserve	% Funded	Reserve Contributions	Interest Income	Reserve Expenses	Ending Reserve
	Balance	Balance				•	Balance
2021	\$1,783,714	\$1,277,315	72%	\$265,200	\$1,175	\$470,000	\$1,073,690
2022	\$1,522,248	\$1,073,690	71%	\$273,156	\$1,118	\$185,400	\$1,162,565
2023	\$1,551,151	\$1,162,565	75%	\$281,351	\$1,062	\$483,240	\$961,737
2024	\$1,279,371	\$961,737	75%	\$289,791	\$992	\$230,565	\$1,021,955
2025	\$1,265,075	\$1,021,955	81%	\$298,485	\$1,172	\$0	\$1,321,612
2026	\$1,493,377	\$1,321,612	88%	\$307,439	\$1,437	\$77,671	\$1,552,817
2027	\$1,654,237	\$1,552,817	94%	\$316,663	\$1,424	\$576,130	\$1,294,773
2028	\$1,312,392	\$1,294,773	99%	\$326,163	\$1,459	\$0	\$1,622,394
2029	\$1,559,763	\$1,622,394	104%	\$335,947	\$1,736	\$110,842	\$1,849,235
2030	\$1,706,629	\$1,849,235	108%	\$346,026	\$1,936	\$173,535	\$2,023,662
2031	\$1,799,754	\$2,023,662	112%	\$356,407	\$2,203	\$0	\$2,382,272
2032	\$2,081,034	\$2,382,272	114%	\$356,407	\$2,532	\$58,830	\$2,682,381
2033	\$2,316,976	\$2,682,381	116%	\$356,407	\$2,862	\$0	\$3,041,649
2034	\$2,627,615	\$3,041,649	116%	\$356,407	\$3,179	\$83,706	\$3,317,529
2035	\$2,868,589	\$3,317,529	116%	\$356,407	\$3,154	\$686,716	\$2,990,374
2036	\$2,503,143	\$2,990,374	119%	\$356,407	\$3,080	\$179,945	\$3,169,915
2037	\$2,656,382	\$3,169,915	119%	\$356,407	\$2,945	\$807,970	\$2,721,297
2038	\$2,175,258	\$2,721,297	125%	\$356,407	\$2,893	\$14,876	\$3,065,722
2039	\$2,504,728	\$3,065,722	122%	\$356,407	\$2,872	\$746,517	\$2,678,484
2040	\$2,098,879	\$2,678,484	128%	\$356,407	\$2,858	\$0	\$3,037,748
2041	\$2,458,403	\$3,037,748	124%	\$356,407	\$3,188	\$58,699	\$3,338,644
2042	\$2,777,151	\$3,338,644	120%	\$356,407	\$3,411	\$213,934	\$3,484,528
2043	\$2,954,733	\$3,484,528	118%	\$356,407	\$3,268	\$793,267	\$3,050,936
2044	\$2,550,367	\$3,050,936	120%	\$356,407	\$3,022	\$416,427	\$2,993,938
2045	\$2,531,738	\$2,993,938	118%	\$356,407	\$3,102	\$143,312	\$3,210,135
2046	\$2,803,871	\$3,210,135	114%	\$356,407	\$3,320	\$140,283	\$3,429,578
2047	\$3,097,602	\$3,429,578	111%	\$356,407	\$3,480	\$258,791	\$3,530,673
2048	\$3,288,705	\$3,530,673	107%	\$356,407	\$3,711	\$0	\$3,890,791
2049	\$3,763,037	\$3,890,791	103%	\$356,407	\$3,905	\$330,606	\$3,920,497
2050	\$3,922,346	\$3,920,497	100%	\$356,407	\$4,063	\$74,232	\$4,206,735

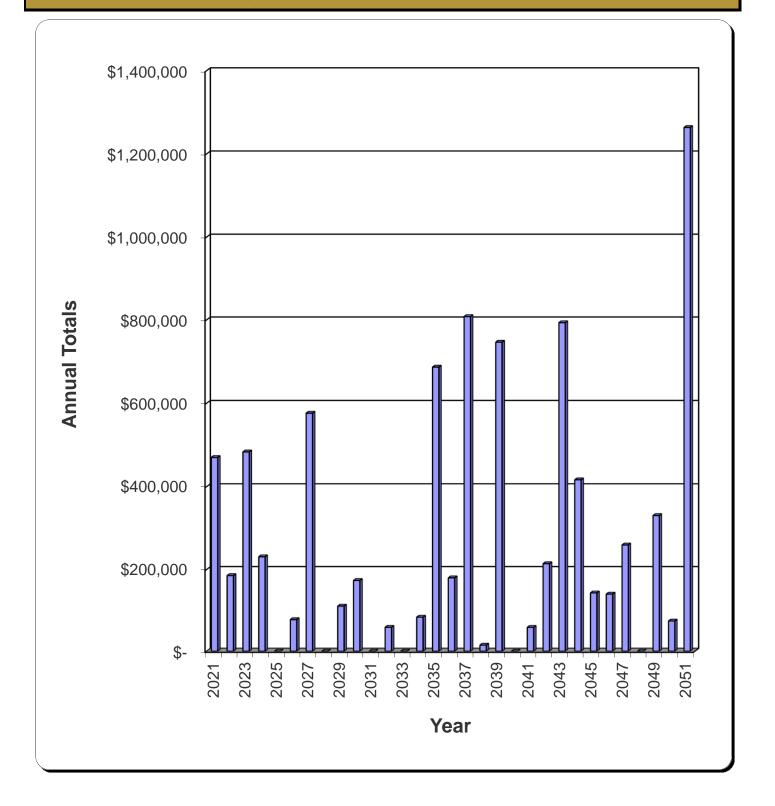
Reserve Contributions - Graph

Component Funding Information

ID	Component Name	NL	RUL	Quantity	Average Current Cost	ldeal Balance	Current Fund Balance	Monthly
1901	Unimog #2 - 2003 - Replace	16	0	(1) Unimog	\$405,000	\$405,000	\$405,000	\$3,406.92
1901	Unimog #3 - 2003 - Replace	16	2	(1) Unimog	\$405,000	\$354,375	\$354,375	\$3,406.92
1901	Unimog #4 - 2006 - Replace	16	6	(1) Unimog	\$405,000	\$253,125	\$8,634	\$3,406.92
1901	Unimog #5 - 2019 - Replace	16	14	(1) Unimog	\$405,000	\$50,625	\$0	\$3,406.92
1902	Dump Truck - Black - Replace	20	1	(1) Dump Truck	\$115,000	\$109,250	\$109,250	\$773.92
1903	Chevy Silverado Diesel Truck - 2007 - Replac	15	1	(1) Truck	\$65,000	\$60,667	\$60,667	\$583.24
1903	Chevy Silverado Diesel Truck - 2011 - Replac	15	0	(1) Truck	\$65,000	\$65,000	\$65,000	\$583.24
1904	Loader Snow Plow - 380 - Replace	15	13	(1) Blade	\$34,500	\$4,600	\$0	\$309.57
1904	Truck Snow Plow - 2007 - Replace	15	2	(1) Plow	\$9,000	\$7,800	\$7,800	\$80.76
1904	Unimog Snow Plows - #4 - Replace	15	11	(1) Plow	\$22,500	\$6,000	\$0	\$201.89
1904	Unimog Snow Plows - #5 - Replace	15	13	(1) Plow	\$22,500	\$3,000	\$0	\$201.89
1905	Snoquip Snow Blower - Replace	15	11	(1) Blower	\$20,000	\$5,333	\$0	\$179.46
1905	Unimog Snow Blower - Replace	18	2	(1) Blower	\$32,500	\$28,889	\$28,889	\$243.02
1906	Unimog Salt Spreaders - #1, & 2 - Replace	20	5	(2) Spreaders	\$67,000	\$50,250	\$50,250	\$450.89
1906	Unimog Salt Spreaders - #4 - Replace	20	16	(1) Spreader	\$33,500	\$6,700	\$0	\$225.45
1906	Unimog Salt Spreaders - #5 - Replace	20	18	(1) Spreader	\$33,500	\$3,350	\$0	\$225.45
1908	Sweeper - DT80 - Replace	15	14	(1) Sweeper	\$31,500	\$2,100	\$0	\$282.65
1908	Sweeper - Schwarze - 2006 - Replace	20	8	(1) Sweeper	\$87,500	\$52,500	\$0	\$588.85
1909	Wood Chipper- Replace	15	15	(1) Wood Chipper	\$50,500	\$0	\$0	\$453.13
1912	Komatsu Skid Steer - 2000 - Replace	25	9	(1) Skid Steer	\$62,500	\$40,000	\$0	\$336.49
1913	Komatsu Loader 380 - 2016 - Replace	20	3	(1) Loader	\$211,000	\$179,350	\$179,350	\$1,419.97
1914	CAT Mini Excavator - 2010 - Replace	20	6	(1) Mini Excavator	\$77,500	\$54,250	\$0	\$521.55
1915	Trackless Tractor - 2016 - Replace	15	9	(1) Trackless MT	\$70,500	\$28,200	\$0	\$632.59
1990	Dump Truck Trailer - Replace	20	14	(1) Trailer	\$17,500	\$5,250	\$0	\$117.77
1990	Skid Steer Trailer - Replace	20	2	(1) Trailer	\$9,000	\$8,100	\$8,100	\$60.57
					\$2,757,500	\$1,783,714	\$1,277,315	\$22,100

\$1,277,315

Current Fund Balance as a percentage of Ideal Balance: 72%



Yearly Cash Flow

Year	2021	2022	2023	2024	2025
Starting Balance	\$1,277,315	\$1,073,690	\$1,162,565	\$961,737	\$1,021,955
Reserve Income	\$265,200	\$273,156	\$281,351	\$289,791	\$298,485
Interest Earnings	\$1,175	\$1,118	\$1,062	\$992	\$1,172
Special Assessments	\$0	\$0	\$0	\$0	\$0
Funds Available	\$1,543,690	\$1,347,965	\$1,444,977	\$1,252,520	\$1,321,612
Reserve Expenditures	\$470,000	\$185,400	\$483,240	\$230,565	\$0
Ending Balance	\$1,073,690	\$1,162,565	\$961,737	\$1,021,955	\$1,321,612
Year	2026	2027	2028	2029	2030
Starting Balance	\$1,321,612	\$1,552,817	\$1,294,773	\$1,622,394	\$1,849,235
Reserve Income	\$307,439	\$316,663	\$326,163	\$335,947	\$346,026
Interest Earnings	\$1,437	\$1,424	\$1,459	\$1,736	\$1,936
Special Assessments	\$0	\$0	\$0	\$0	\$0
Funds Available	\$1,630,488	\$1,870,903	\$1,622,394	\$1,960,077	\$2,197,197
Reserve Expenditures	\$77,671	\$576,130	\$0	\$110,842	\$173,535
Ending Balance	\$1,552,817	\$1,294,773	\$1,622,394	\$1,849,235	\$2,023,662
Year	2031	2032	2033	2034	2035
Starting Balance	\$2,023,662	\$2,382,272	\$2,682,381	\$3,041,649	\$3,317,529
Reserve Income	\$356,407	\$356,407	\$356,407	\$356,407	\$356,407
Interest Earnings	\$2,203	\$2,532	\$2,862	\$3,179	\$3,154
Special Assessments	\$0	\$0	\$0	\$0	\$0
Funds Available	\$2,382,272	\$2,741,211	\$3,041,649	\$3,401,235	\$3,677,089
Reserve Expenditures	\$0	\$58,830	\$0	\$83,706	\$686,716
Ending Balance	\$2,382,272	\$2,682,381	\$3,041,649	\$3,317,529	\$2,990,374
Year	2036	2037	2038	2039	2040
Starting Balance	\$2,990,374	\$3,169,915	\$2,721,297	\$3,065,722	\$2,678,484
Reserve Income	\$356,407	\$356,407	\$356,407	\$356,407	\$356,407
Interest Earnings	\$3,080	\$2,945	\$2,893	\$2,872	\$2,858
Special Assessments	\$0	\$0	\$0	\$0	\$0
Funds Available	\$3,349,860	\$3,529,267	\$3,080,597	\$3,425,000	\$3,037,748
Reserve Expenditures	\$179,945	\$807,970	\$14,876	\$746,517	\$0
Ending Balance	\$3,169,915	\$2,721,297	\$3,065,722	\$2,678,484	\$3,037,748
Year	2041	2042	2043	2044	2045
Starting Balance	\$3,037,748	\$3,338,644	\$3,484,528	\$3,050,936	\$2,993,938
Reserve Income	\$356,407	\$356,407	\$356,407	\$356,407	\$356,407
Interest Earnings	\$3,188	\$3,411	\$3,268	\$3,022	\$3,102
Special Assessments	\$0	\$0	\$0	\$0	\$0
Funds Available	\$3,397,343	\$3,698,462	\$3,844,203	\$3,410,365	\$3,353,447
Reserve Expenditures	\$58,699	\$213,934	\$793,267	\$416,427	\$143,312
Ending Balance	\$3,338,644	\$3,484,528	\$3,050,936	\$2,993,938	\$3,210,135
Year	2046	2047	2048	2049	2050
Starting Balance	\$3,210,135	\$3,429,578	\$3,530,673	\$3,890,791	\$3,920,497
Reserve Income	\$356,407	\$356,407	\$356,407	\$356,407	\$356,407
Interest Earnings	\$3,320	\$3,480	\$3,711	\$3,905	\$4,063
Special Assessments	\$0 \$0	\$0	\$0	\$0	\$0
Funds Available	\$3,569,861	\$3,789,464	\$3,890,791	\$4,251,103	\$4,280,967
Reserve Expenditures	\$140,283	\$258,791	\$0	\$330,606	\$74,232
Ending Balance	\$3,429,578	\$3,530,673	\$3,890,791	\$3,920,497	\$4,206,735
	, - ,	. ,,	. ,,	. , -,	. ,,

Yearly Reserve Expenditures - Graph

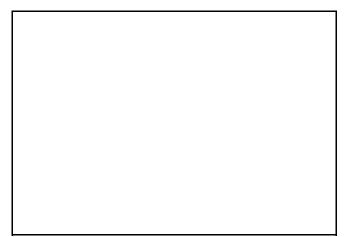
CS_

Projected Reserve Expenditures by Year

Year	ID #	Component Name	Projected Cost	Total Per Annum
2021	1901	Unimog #2 - 2003 - Replace	\$405,000	Annum
2021	1903	Chevy Silverado Diesel Truck - 2011 - Replace	\$65,000	\$470,000
2022	1902	Dump Truck - Black - Replace	\$118,450	φ+70,000
2022	1902	Chevy Silverado Diesel Truck - 2007 - Replace	\$66,950	\$185,400
2023	1903	Unimog #3 - 2003 - Replace	\$429,665	ψ100, 1 00
2020	1904	Truck Snow Plow - 2007 - Replace	\$9,548	
	1905	Unimog Snow Blower - Replace	\$34,479	
	1990	Skid Steer Trailer - Replace	\$9,548	\$483,240
2024	1913	Komatsu Loader 380 - 2016 - Replace	\$230,565	\$230,565
2025	1010	No Expenditures Projected	\$200,000	\$0
2026	1906	Unimog Salt Spreaders - #1, & 2 - Replace	\$77,671	\$77,671
2020	1900	Unimog #4 - 2006 - Replace	\$483,591	φ//,0/1
2021	1914	CAT Mini Excavator - 2010 - Replace	\$92,539	\$576,130
2028	1011	No Expenditures Projected	ψ02,000	\$0
2020	1908	Sweeper - Schwarze - 2006 - Replace	\$110,842	\$110,842
2023	1912	Komatsu Skid Steer - 2000 - Replace	\$81,548	ΨTT0,0 1 2
2030	1912	Trackless Tractor - 2016 - Replace	\$91,987	\$173,535
2031	1313	No Expenditures Projected	\$ 51,507	\$0
2031	1904	Unimog Snow Plows - #4 - Replace	\$31,145	ΨΟ
2002	1905	Snoquip Snow Blower - Replace	\$27,685	\$58,830
2033	1303	No Expenditures Projected	Ψ21,000	\$00,000 \$0
2033	1904	Loader Snow Plow - 380 - Replace	\$50,664	ψΟ
2004	1904	Unimog Snow Plows - #5 - Replace	\$33,042	\$83,706
2035	1904	Unimog #5 - 2019 - Replace	\$612,599	φ00,700
2000	1908	Sweeper - DT80 - Replace	\$47,647	
	1990	Dump Truck Trailer - Replace	\$26,470	\$686,716
2036	1903	Chevy Silverado Diesel Truck - 2011 - Replace	\$101,268	<i>\</i> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
2000	1909	Wood Chipper- Replace	\$78,677	\$179,945
2037	1901	Unimog #2 - 2003 - Replace	\$649,906	<i>Q110,010</i>
2001	1903	Chevy Silverado Diesel Truck - 2007 - Replace	\$104,306	
	1906	Unimog Salt Spreaders - #4 - Replace	\$53,758	\$807,970
2038	1904	Truck Snow Plow - 2007 - Replace	\$14,876	\$14,876
2039	1901	Unimog #3 - 2003 - Replace	\$689,485	<i>\\\\\\\\\\\\\</i>
	1906	Unimog Salt Spreaders - #5 - Replace	\$57,032	\$746,517
2040		No Expenditures Projected	<i>vo:</i> ; <i>vo</i> =	\$0
2041	1905	Unimog Snow Blower - Replace	\$58,699	\$58,699
2042	1902	Dump Truck - Black - Replace	\$213,934	\$213,934
2043	1902	Unimog #4 - 2006 - Replace	\$776,022	φ <u>2</u> 10,001
_0.0	1990	Skid Steer Trailer - Replace	\$17,245	\$793,267
2044	1913	Komatsu Loader 380 - 2016 - Replace	\$416,427	\$416,427
2045	1915	Trackless Tractor - 2016 - Replace	\$143,312	\$143,312
2045	1906	Unimog Salt Spreaders - #1, & 2 - Replace	\$140,283	\$140,283
	1900	Unimog Snow Plows - #4 - Replace	\$48,523	ψι+0,200
2047				

Year	Comp ID	Component Name	Projected Cost	Total Per Annum
	1914	CAT Mini Excavator - 2010 - Replace	\$167,136	\$258,791
2048		No Expenditures Projected		\$0
2049	1904	Loader Snow Plow - 380 - Replace	\$78,934	
	1904	Unimog Snow Plows - #5 - Replace	\$51,478	
	1908	Sweeper - Schwarze - 2006 - Replace	\$200,194	\$330,606
2050	1908	Sweeper - DT80 - Replace	\$74,232	\$74,232

Component Evaluation


Comp #: 1901 Unimog #1 - 2003 - Replace

Location:	Maintenance Area		
Quantity:	(1) Unimog		
Life Expectancy: Best Cost:	N/A \$0	Remaining Life:	
Worst Cost:	\$0		

General Notes:

Source of Information:

Observations:

This component is in working condition, but the association has already replaced it with Unimog 5.

Comp #: 1901 Unimog #2 - 2003 - Replace

Location:	Maintenance Area	General Notes:
Quantity:	(1) Unimog	Hours 8,372
Life Expectancy:	16 Remaining Life: 0	
Best Cost:	\$400,000	
Estimate to replace, used		
<i>Worst Cost:</i> \$410,000 Higher estimate, new		
Source of Information: Research with Client		

Observations:

The Unimog is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Comp #: 1901 Unimog #3 - 2003 - Replace

Location:	Maintenance Area	General Notes:		
Quantity:	(1) Unimog	Hours 8,435		
Life Expectancy:	16 Remaining Life: 2			
Best Cost:	\$400,000			
Estimate to replace, used				
<i>Worst Cost:</i> Higher estimate,				
Source of Information: Research with Client				

Observations:

The Unimog is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Comp #: 1901 Unimog #4 - 2006 - Replace

Location:	Maintenance Area	General Notes:
Quantity:	(1) Unimog	Hours 2,381
Life Expectancy:	16 Remaining Life: 6	
Best Cost:	\$400,000	
Estimate to replace, used		
<i>Worst Cost:</i> \$410,000 Higher estimate, new		
Source of Information: Research with Client		

Observations:

The Unimog is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Comp #: 1901 Unimog #5 - 2019 - Replace

Location:	Maintenance Area	Gen			
Quantity:	(1) Unimog				
Life Expectancy:	16 Remaining Life: 14				
Best Cost:	\$400,000				
Estimate to replace, used					
Worst Cost:	\$410,000				
Higher estimate, new					
Source of Information: Research with Client					
		1			

Observations:

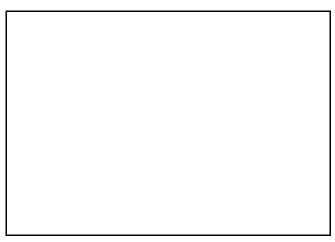
The Unimog is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Page 5 of 28

General Notes:

Hours 819

Comp #: 1902 Dump Truck - Black - Replace



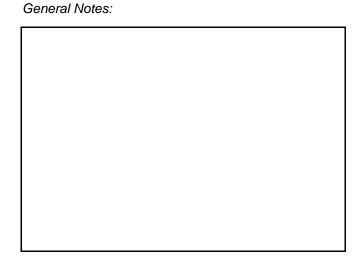
Location:	Maintenance Area			
Quantity:	(1) Dump Truck			
Life Expectancy:	20 Remaining Life: 1			
Best Cost:	\$110,000			
Estimate to replac	e			
Worst Cost: \$120,000 Higher estimate				
Source of Information: Research with Client				

Observations:

The dump truck is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current condition.

General Notes:

Comp #: 1903 Chevy Silverado Diesel Truck - 2007 - Replace



Location:	Maintenance Area			
Quantity:	(1) Truck			
<i>Life Expectancy:</i> <i>Best Cost:</i> Estimate to replac	15 Remaining Life: 1 \$60,000 se			
Worst Cost: \$70,000 Higher estimate				
Source of Information: CSL Cost Database				

Observations:

The diesel truck is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current condition.

Comp #: 1903 Chevy Silverado Diesel Truck - 2011 - Replace

Picture Unavailable	Picture Unavailable

Location:	Maintenance Area	General Notes:		
Quantity:	(1) Truck			
Life Expectancy: Best Cost: Estimate to replace	15 <i>Remaining Life:</i> 0 \$60,000 e			
<i>Worst Cost:</i> Higher estimate	\$70,000			
Source of Information: CSL Cost Database				
Observations:				

The diesel truck is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current condition.

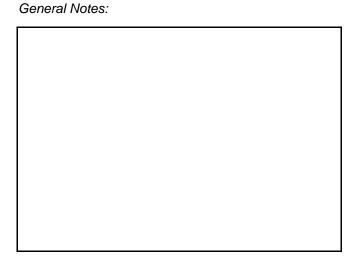
Comp #: 1904 Loader Snow Plow - 320 - Replace

Location:	Maintenance Area	General Notes:
Quantity:	(1) Plow	
Life Expectancy: Best Cost:	N/A Remaining Life: \$0	
Worst Cost:	\$0	
Source of Informa	ation:	

Observations:

Research with the client reveals this component will not be replaced.

Comp #: 1904 Loader Snow Plow - 380 - Replace

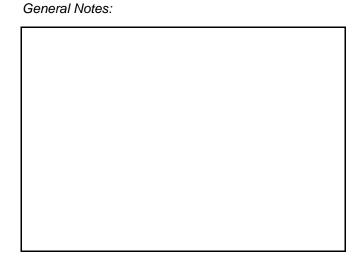


Location:	Maina	atenance Area
Quantity:	(1) Blade	
Life Expectancy:	15	Remaining Life: 13
Best Cost:	\$32,000	
Estimate to replace		
Worst Cost:	\$37,0	000
Higher estimate		
Source of Information: Research with Client		

Observations:

The blade is in working condition. We recommend funding to replace this component approximately every 10 - 15 years. Remaining life based on current age.

Comp #: 1904 Truck Snow Plow - 2007 - Replace

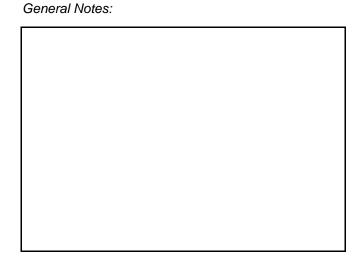


Location:	Maintenance Area	
Quantity:	(1) Plow	
Life Expectancy:	15 Remaining Life: 2	
Best Cost:	\$8,000	
Estimate to replace		
Worst Cost:	\$10,000	
Higher estimate		
Source of Information: CSL Cost Database		

Observations:

The snow plow is in working condition. We recommend funding to replace this component approximately every 10 - 15 years. Remaining life based on current age and condition.

Comp #: 1904 Unimog Snow Plows - #4 - Replace

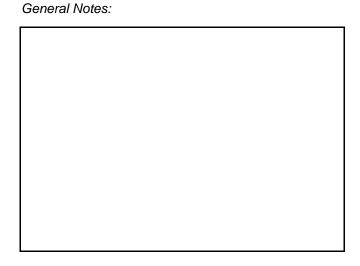


Location:	Maintenance Area	
Quantity:	(1) Plow	
Life Expectancy: Best Cost:	15 Remaining Life: 11 \$20,000	
Estimate to replace		
<i>Worst Cost:</i> Higher estimate	\$25,000	
Source of Information: Research with Client		

Observations:

The snow plow is in working condition. We recommend funding to replace this component approximately every 10 - 15 years. Remaining life based on current age and condition.

Comp #: 1904 Unimog Snow Plows - #5 - Replace

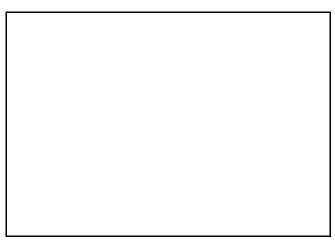


Location:	Maintenance Area	
Quantity:	(1) Plow	
Life Expectancy:	15 Remaining Life: 13	
Best Cost:	\$20,000	
Estimate to replace		
Worst Cost: Higher estimate	\$25,000	
Source of Information: Research with Client		

Observations:

The snow plow is in working condition. We recommend funding to replace this component approximately every 10 - 15 years. Remaining life based on current age and condition.

Comp #: 1905 Snoquip Snow Blower - Replace



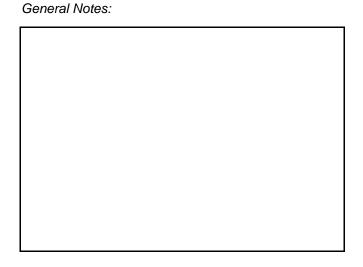
Location:	Maintenance Area	
Quantity:	(1) Blower	
Life Expectancy:	15 Remaining Life: 11	
Best Cost:	\$18,000	
Estimate to replace		
Worst Cost:	\$22,000	
Higher estimate		
Source of Information: Research with Client		

Observations:

The snow blower is in working condition. We recommend funding to replace this component approximately every 12 - 15 years. Remaining life based on current age.

General Notes:

Comp #: 1905 Unimog Snow Blower - Replace

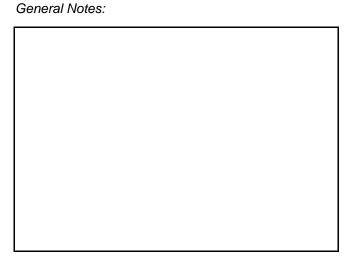


Location:	Maintenance Area	
Quantity:	(1) Blower	
Life Expectancy:	18 Remaining Life: 2	
Best Cost:	\$30,000	
Estimate to replace		
	•	
Worst Cost:	\$35,000	
Higher estimate		
Source of Information: Research with Client		

Observations:

The snow blowers are in working condition. We recommend funding to replace this component approximately every 15 - 18 years. Remaining life based on current age.

Comp #: 1906 Unimog Salt Spreaders - #1, & 2 - Replace

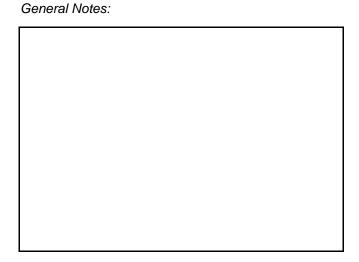


Location:	Mainatenance Area		
Quantity:	(2) Spreaders		
Life Expectancy:	20 Remaining Life: 5		
Best Cost:	\$62,000		
Estimate to replace	timate to replace		
Worst Cost:	\$72,000		
Higher estimate			
Source of Information: Research with Client			

Observations:

The spreaders are in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Comp #: 1906 Unimog Salt Spreaders - #4 - Replace

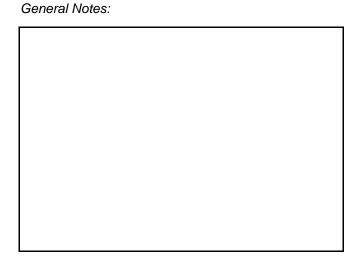


Location:	Mainatenance Area	
Quantity:	(1) Spreader	
Life Expectancy:	20	Remaining Life: 16
Best Cost:	\$31,000	
Estimate to replac	е	
Worst Cost: Higher estimate	\$36,0	000
Source of Informa	tion:	Research with Client

Observations:

The spreader is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Comp #: 1906 Unimog Salt Spreaders - #5 - Replace



Location:	Mainatenance Area	
Quantity:	(1) Spreader	
Life Expectancy:	20	Remaining Life: 18
Best Cost:	\$31,000	
Estimate to replac	е	
Worst Cost: Higher estimate	\$36,0	000
Source of Informa	tion: F	Research with Client

Observations:

The spreader is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Comp #: 1908 Sweeper - DT80 - Replace

	Location:	Mainatenance Area		
	Quantity:	(1) Sweeper	Hours	
	Life Expectancy:	15 Remaining Life: 14		
	Best Cost: \$31,000 Estimate to replace			
Worst Cost: \$32,000 Higher estimate				
Source of Information: Research with Client				

Observations:

The sweeper is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Hours 2,955

Comp #: 1908 Sweeper - Schwarze - 2006 - Replace

Picture Unavailable	Picture Unavailable

Location:	Mainatenance Area	General Notes:	
Quantity:	(1) Sweeper		
Life Expectancy:	20 Remaining Life: 8		
Best Cost: \$85,000 Estimate to replace			
Worst Cost: \$90,000 Higher estimate			
Source of Information: Research with Client			
Observations			

Observations:

The sweeper is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age and condition.

Comp #: 1909 Wood Chipper- Replace

Picture Unavailable
Picture Unavailable

Location:	Mainatenance Area G			
Quantity:	(1) Wood Chipper			
<i>Life Expectancy: Best Cost:</i> Estimate to replac	15 <i>Remaining Life:</i> 15 \$50,000 æ			
Worst Cost: \$51,000 Higher estimate				
Source of Information: Research with Client				

Observations:

General Notes:

Research with the client reveals this component will be purchased in 2021. We recommend funding to replace this component approximately every 10 - 15 years. Remaining life based on current age.

Comp #: 1912 Komatsu Skid Steer - 2000 - Replace

Picture Unavailable	Picture Unavailable

Location:	Maintenance Area	General Notes:		
Quantity:	(1) Skid Steer	(1) Skid Steer		
Life Expectancy:	25 Remaining Life: 9			
Best Cost: \$60,000 Estimate to replace				
Worst Cost: \$65,000 Higher estimate				
Source of Information: Research with Client				

Observations:

The skid steer is in working condition. We recommend funding to replace this component approximately every 20 - 25 years. Remaining life based on current age and condition.

Comp #: 1913 Komatsu Loader 320 - 2002 - Replace

Location:	Maintenance Area	
Quantity:	(1) Lo	oader
Life Expectancy: Best Cost:	N/A \$0	Remaining Life:
Worst Cost:	\$0	

General Notes:

Source of Information:

Observations:

Research with the client reveals this component will not be replaced.

Comp #: 1913 Komatsu Loader 380 - 2016 - Replace

Location:	Maintenance Area	General Notes:		
Quantity:	(1) Loader	Hours 2,955		
Life Expectancy:	20 Remaining Life: 3			
Best Cost:	\$206,000			
Estimate to replace				
Worst Cost: \$216,000 Higher estimate				
Source of Information: Research with Client				

Observations:

The loader is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Comp #: 1914 CAT Mini Excavator - 2010 - Replace

Location:	Maintenance Area G		Ge	
Quantity:	(1) M	(1) Mini Excavator		
Life Expectancy:	20	Remaining Life: 6		
Best Cost:	\$75,000			
Estimate to replace				
Worst Cost: \$80,000 Higher estimate				
Source of Information: Research with Client				

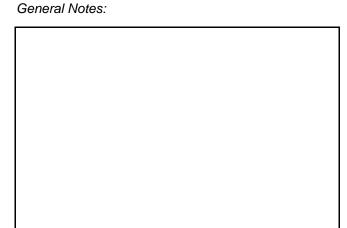
Observations:

The excavator is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

General Notes:

Hours 1,717

Comp #: 1915 Trackless Tractor - 2016 - Replace



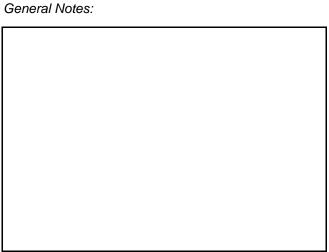
Location:	Maintenance Area	
Quantity:	(1) Trackless MT	
Life Expectancy:	15 Remaining Life: 9	
Best Cost: \$68,000 Estimate to replace		
<i>Worst Cost:</i> Higher estimate	\$73,000	

Source of Information: Research with Client

Observations:

The trackless tractor is in working condition. We recommend funding to replace this component approximately every 12 - 15 years. Remaining life based on current age.

Comp #: 1990 Dump Truck Trailer - Replace



Location:	Maintenance Area G		
Quantity:	(1) Trailer		
Life Expectancy: Best Cost: Estimate to replace	20 Remaining Life: 14 \$15,000 e		
Worst Cost: \$20,000 Higher estimate			
Source of Information: CSL Cost Database			

Observations:

The trailer is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Comp #: 1990 Skid Steer Trailer - Replace

Picture Unavailable	Picture Unavailable

Location:	Maintenance Area	General Notes:
Quantity:	(1) Trailer	
Life Expectancy:	20 Remaining Life: 2	
Best Cost: Estimate to replac	\$8,000 ce	
<i>Worst Cost:</i> Higher estimate	\$10,000	
Source of Informa	tion: CSL Cost Database	
Observations:		

The trailer is in working condition. We recommend funding to replace this component approximately every 15 - 20 years. Remaining life based on current age.

Glossary of Commonly Used Words And Phrases

(Provided by the National Reserve Study Standards of the Community Associations Institute)

Cash Flow Method – A method of developing a reserve funding plan where contributions to the reserve fund are designed to offset the variable annual expenditures from the reserve fund. Different reserve funding plans are tested against the anticipated schedule of reserve expenses until the desired funding goal is achieved.

Component – Also referred to as an "Asset." Individual line items in the Reserve Study developed or updated in the physical analysis. These elements form the building blocks for the Reserve Study. Components typically are: 1) Association responsibility, 2) with limited useful life expectancies, 3) have predictable remaining life expectancies, 4) above a minimum threshold cost, and 5) required by local codes.

Component Full Funding – When the actual (or projected) cumulative reserve balance for all components is equal to the fully funded balance.

Component Inventory – The task of selecting and quantifying reserve components. This task can be accomplished through on-site visual observations, review of association design and organizational documents, a review of established association precedents, and discussion with appropriate association representatives.

Deficit – An actual (or projected reserve balance), which is less than the fully funded balance.

Effective Age – The difference between useful life and remaining useful life (UL - RUL).

Financial Analysis – The portion of the Reserve Study where current status of the reserves (measured as cash or percent funded) and a recommended reserve contribution rate (reserve funding plan) are derived, and the projected reserve income and expenses over time is presented. The financial analysis is one of the two parts of the Reserve Study.

Fully Funded Balance – An indicator against which the actual (or projected) reserve balance can be compared. The reserve balance that is in direct proportion to the fraction of life "used up" of the current repair or replacement cost of a reserve component. This number is calculated for each component, and then summed together for an association total.

FFB = Current Cost * Effective Age / Useful Life

Fund Status – The status of the reserve fund as compared to an established benchmark, such as percent funded.

Funding Goals – Independent of calculation methodology utilized, the following represent the basic categories of funding plan goals:

- *Baseline Funding*: Establishing a reserve-funding goal of keeping the reserve balance above zero.
- *Component Full Funding*: Setting a reserve funding goal of attaining and maintaining cumulative reserves at or near 100% funded.
- *Threshold Funding*: Establishing a reserve funding goal of keeping the reserve balance above a specified dollar or percent funded amount.

Funding Plan – An association's plan to provide income to a reserve fund to offset anticipated expenditures from that fund.

Funding Principles -

- Sufficient funds when required
- Stable contributions through the year
- Evenly distributed contributions over the years
- Fiscally responsible

GSF - Gross Square Feet

Life and Valuation Estimates – The task of estimating useful life, remaining useful life, and repair or replacement costs for the reserve components.

LF - Linear Feet

Percent Funded – The ratio, at a particular point in time (typically the beginning of the fiscal year), of the actual (or projected) reserve balance to the ideal fund balance, expressed as a percentage.

Physical Analysis – The portion of the Reserve Study where the component evaluation, condition assessment, and life and valuation estimate tasks are performed. This represents one of the two parts of the Reserve Study.

Remaining Useful Life (RUL) – Also referred to as "remaining life" (RL). The estimated time, in years, that a reserve component can be expected to continue to serve its intended function. Projects anticipated to occur in the current fiscal year have a "0" remaining useful life.

Replacement Cost – The cost of replacing, repairing, or restoring a reserve component to its original functional condition. The current replacement cost would be the cost to replace, repair, or restore the component during that particular year.

Reserve Balance – Actual or projected funds as of a particular point in time (typically the beginning of the fiscal year) that the association has identified for use to defray the future repair or replacement of those major components that the association is obligated to maintain. Also known as "reserves," "reserve accounts," or "cash reserves." In this report the reserve balance is based upon information provided and is not audited.

Reserve Study – A budget-planning tool, which identifies the current status of the reserve fund and a stable and equitable funding plan to offset the anticipated future major common area expenditures. The Reserve Study consists of two parts: The Physical Analysis and the Financial Analysis.

Special Assessment – An assessment levied on the members of an association in addition to regular assessments. Governing documents or local statutes often regulate special assessments.

Surplus – An actual (or projected) reserve balance that is greater than the fully funded balance.

Useful Life (UL) – Also known as "life expectancy." The estimated time, in years, that a reserve component can be expected to serve its intended function if properly constructed and maintained in its present application of installation.

